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Abstract: We approximate a circular arc using a polynomial curve of degree 6.
The approximation has least deviation from the x-axis and the error function is of
degree 12; the error function equioscillates 13 times rather than the classical 8 times
equioscillations that are mathematically guaranteed by the Borel and Chebyshev
theorems without a method to find their approximation.

keywords: Bézier curves; sextic approximation; circular arc; equioscillation;
CAD.

MSC: 41A10; 41A25; 41A50; 65D10; 65D17.

1 Introduction

The set C[a,b] contains continuous functions on the closed interval [a,b]. The uni-

form (Chebyshev) norm on the linear space C|[a,b] is defined by

1flloe = max, |f(2)], ¥f € Cla,b)

The set P, contains all polynomials of degree n. Define the deviation A(P,) of a
polynomial P, € Py, from the function f € Cla,b] by

A(Pn) = [[f = Palloo-
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For n > 0, we define

E, = E,(f) =inf{A(P,),VP, € Py}
The set E,, satisfies

E,>0, Eo>E1>Ey>FE3>---.

E, is closed and, therefore, is compact.

Consider a given function f € Cfa,b], then a polynomial P} is called the poly-
nomial of best uniform approximation to f if A(P}F) = E,,.

The existence of a polynomial P} in Py, for which A(P¥) = E,, is proved by E.
Borel, see [9]. The equioscillation of n + 2 times is used. A function E(z) is said
to equioscillate n + 2 times on [a, b] if there are n 4+ 2 points, a < 1 < g < -+- <

Tpil < Tpa2 < b with

)| = < <
|E ()] argggblE(fv)l, 1<i<n+2

and FE(z;4+1) has opposite sign of E(z;), 1 < i < n+ 1. The uniqueness of this
polynomial P and the characterization are proved by Chebyshev by showing the
existence of n + 2 points (Chebyshev alternant, z7 < 23 < -+ < Zpy2) which

alternately satisfy
Pr(x;) — f(x;) = FEn, i=1,2,...,n+2.

Although, theoretically, there is a unique solution; but, for computational purposes,
we can only find polynomials of degrees 0 and 1. There is no method to find poly-
nomials of best approximation of degrees n > 2. The improvement in this field is
very slow and it is a challenging issue to tackle this problem; “As a matter of fact,
the latter problem involves such formidable difficulties that a general solution has
not been found to this day [9]”.

The set P,, contains all monic polynomials of degree n on I = [0,1]. It is well-
known that the shifted monic Chebyshev polynomial T},(2¢t — 1) has the smallest

maximum value on I, i.e.

1Talloo < [|Palloc;  VPn € Pa,

where equality holds only if P, = T},. The Chebyshev polynomial T}, (2¢t—1) equioscil-
lates n + 2 times in [0, 1].
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In this paper, the circlular arc is approximated. We find the polynomial of
degree six of best uniform approximation that equioscillates 13 times rather than
8 times. This is a substantial improvement because finding the polynomial of best
approximation of degree six that equioscillates 8 times is not possible so far.

Parametric curves are flexibil in representing and building curves. In our case,
they offer additional degrees of freedom that are used to better represent the original
curve. This property is used in [10, 11] to improve the approximation order by
polynomials of degree n from n + 1 to 2n.

This paper is organized as follows. Preliminaries are given in section 2. The
Bézier points and curve are given in section 3. The sextic Bézier curve of best
uniform approximation is presented and proved in section 4, and the properties are

presented in section 5.

2 Preliminaries

A circular arc ¢ : t — (cos(t),sin(t)), —0 < t < 6, given in Fig. 1, needs to be
approximated by a polynomial curve with best uniform approximation. We use the
geometric symmetries of the circle to choose in a proper way the Bézier points. The
required sextic Bézier curve has to intersect the circular arc 12 times. The associated
error function has to equioscillate 13 times.

The circle ¢ is approximated in this paper using a sextic parametrically defined
polynomial curve p : t — (z(t),y(t)), 0 <t <1, where z(t),y(t) are polynomials of
degree 6, that approximates ¢ with “minimum” error. Many researchers have tackled
this issue using different degrees, norms, and methods, see [1, 2, 3, 4, 6, 8, 13, 12].
The results of our method in this paper are optimal and can not be improved.

The proper distance function to measure the error between p and c is the Eu-

clidean error function:
E(t) = v/a(0) + 20 — 1. &
E(t) will be replaced by the following error function
e(t) :== 22(t) + y*(t) — 1. (2)

Since e(t) = 0 is the implicit equation of the unit circle; this implies that the e(t)

error function is a suitable measure to test if z(t) and y(t) satisfy this equation and
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Figure 1: A circular arc

to measure the error. Both error functions share the same roots and critical points,
see Propositions I and II.

The approximation problem: Find a polynomial curve p : ¢ — (2(t), y(t)), 0 <
t < 1, where z(t), y(t) are of degree 6, that approximates ¢ and satisfies the following

requirements:
1. p minimizes max,c(o1) |e(t)],
2. e(t) equioscillates 13 times over [0, 1].

These properties are utilized to find the Bézier points and to satisfy the geometric
conditions of the circular arc. For more on these topics, see [5, 7].
In this paper, we allow the angle # to be as large as possible in order to approx-

imate the largest circular arc with the specified error. Thereafter, this angle 6 has
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to be scaled by a factor that is also combined with a reduction in the uniform error,

see the conclusions and open problems’ section.

3 The Bézier curve

We use the curve p(t) in Bézier form of degree 6 as follows
6
p(t) =Y piBi(t) = . 0<t<, (3)
i=0

where po, p1, p2, p3, pa, ps and pg are the Bézier points, and B§(t) = (1—1)%, BS(t) =
6t(1 —t)°, BS(t) = 15t3(1 —t)*, BS§(t) =20t3(1 —¢t)3, BS(t) = 15t4(1 —t)2, BS(t) =
6t°(1 — t) and BS(t) = t® are the Bernstein polynomials of degree 6. Since our
purpose is to represent the arc with a polynomial curve with the least possible error,
it is not substantial for the errors to take place at the endpoints or elsewhere; it is
significant to ensure that this error is as low as possible no matter where the error
occurs.

We want to minimize the error over all of the interval [0, 1]. To explore the Bézier
form approximation of a circular arc, a careful selection of locations of the 7 Bézier
points should be well-done. These locations are substantial to earn the convenient
curve that satisfies the approximation requirements. Because of the symmetry of the
circle, the proper choice for the beginning control point py should obey the following
form: pg = (agcos(f), Bosin(f)), where values of oy and Sy could but should not
be the same. Similarly, for symmetry reasoning, the valid option for the end control
point pg is pg = (apcos(f), —Bosin(h)). Set p1 = (a1, by), then the point ps; has
to be selected to satisfy the form ps = (a1, —b1). Set the point ps = (a2, bs), then
the point ps has to be selected to satisfy the form ps = (a2, —bz). For symmetry
purposes the point ps has to be selected to satisfy the form ps = (ag, 0). To simplify
the notations, we set ag = g cos(f), by = Bosin(f). So, the Bézier points, see Fig.

2, have the following form:

agp a1 a2 ag
Pbo = y P1 = y P2 = y P3 = ’
bo by ba 0
a9 al ag
ps = y D5 = y D6 = (4)

—ba —b1 —bo
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We will find that there are more than one solution. The solution of best uniform ap-
proximation begins in the second quadrant and ends in the fourth quadrant counter
clockwise. Therefore, in order to have the Bézier curve p begin in the second quad-
rant, go counter clockwise through fourth, third, first, second, and ends in the fourth

quadrant as the circular arc ¢, the following stipulations should be satisfied:
a07a17b1>b2 <0> a25a35b0 > 0. (5)

Substitute the Bézier points in (5) in the Bézier curve p(t) in (4) gives the following

equation:

_ (00 (B30 + BE@) + an (BR(O) + BEW) + 02 (B0) + BYO) +esBEO) | o
bo (BS(t) — B§(t)) + b1 (BY(t) — BE(t)) + ba (B3(t) — B(t)) '

The Bézier curve is determined by the 7 parameters ag, ay,as,as, by, by,bs. These
parameters are used to get the best approximation with least deviation. We want
to impose the requirements on the polynomial curve p; the polynomials z(¢t) and
y(t) are substituted into e(t). This leads to a polynomial of degree 12 that is solved

using a computer algebra system; this is done in the next section.

4 The sextic Bézier curve of least deviation

In the following theorem, we give the values of ag, a1, as, as, by, b1, ba that satisfy the
requirements of the approximation problem.
Theorem 1: The Bézier curve in (6) determined by the Bézier points in (4) and

the following values of the parameters:

ap = —0.6555549357237914, a1 = —2.017393630688113, ay = 0.04396404726686853, (7)
as = 4.410826755740794, by = 0.7554707191533404, by = —0.44176804233980593, (8)
by = —3.595471196239275 (9)

satisfies the following requirements: p minimizes the uniform norm of the error

function max;c(o 1) [e(t)[, and the error function e(t) equioscillates 13 times in [0, 1],
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and the error functions satisfy for all ¢ € [0, 1]:

1 1 1 b
— - < < = ~ .
P TRIl(a _¢) = E(t) < SETpEwsE where € [fax |E(t)| ~ 27=.(10)

Proof: We substitute the polynomials z(¢) and y(¢) from equation (6) into the
error function e(t) in (2). Doing some algebraic manipulations gives the following

equation:

4(ap — 6ay + 15as — 10a3)*t'? — 24(agp — 6a1 + 15a3 — 10az)*t'" + 12 (8af + 22843
—1050a1 a9 + 1200&% + 680a1a3 — 1550asa3 + 500@% — 2a0(43a; — 100az + 65a3)
3bg — 24bgby + 4867 + 30bgby — 120b1by + 75b3) 17

20 (13ag + 288af + 1125a3 — 90a1(13as — 8az) — 1350azas + 400a3 — 2a0(63a1—
135as + 85a3) + 9§ — T2boby + 144b7 + 90boby — 360b1by + 225b3) 7

15 (35ag + 57647 — 1992a1as + 1515a3 + ag(—296a;1 + 562as — 336a3) + 1136a1a3
1600azas + .400a3 + 3165 — 232bgb1 + 432b7 + 278bgba — 1032b1by + 615b3) t°

12 (67ad + 792a7 + ao(—484a1 + 770as — 420a3) — 20a1(111ay — 56a3) + 5 (25543
220aza3 + 40a3 + 13b5 — 88boby + 144b7 + 98boby — 312by by + 165b3)) 7

2 (463ag + 3816a7 — 8190aias + 3375a3 + 3360a1as — 2100asas + 200a3 — 42a0(67a1
85as + 40a3) + 461b5 — 2730boby + 37447 + 2730bobs — 6930by by + 2925b3) t°

12 (66a§ + 360a] — 555a1a2 + 150a3 + ag(—331ay + 40(8az — 3az)) + 160a;1as
50asas + 66b5 — 329boby + 36067 + 280bgbs — 525b1by + 150b3) t°

15 (33a§ + 108a] — 108a1as + 15a3 + 16a1as — 4ag(33a1 — 23as + 6as) + 33b3
132boby + 108b7 + 88bgby — 108b1by + 15b3) t*

20 (11af + 18a] — 9a1as + ao(—33a1 + 15a — 2a3) + 11b5 — 33boby + 187

15bgby — 9by1by) t3

6 (11a§ — 22apay + 6af + Sagag + 1165 — 22bby + 6b7 + 5bobs) t°

12 (ad — aga1 + bo(bo — b1)) t — 1 + af + b3.

The approximation requirements are fulfilled if the error function is equal to the
polynomial of least deviation of degree 12. So, the last equation which exemplifies
the error function has to be equalized with the Chebyshev polynomial of first kind

of degree 12, T5(2t — 1)/2048. The monic Chebyshev polynomial of degree 12,
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T12(u) = cos(12 arccos(u)), w € [—1,1] is the unique monic polynomial of degree 12
that has the least uniform error. Equating the coefficients of the same powers on
both sides of the equality, then the solution that satisfies the requirements of the
approximation problem in (5) is found. These solutions are given in equations (7)
- (9) and thus, it is proved that p satisfies the requirements of the approximation

problem. We know that

_ et
B = 5 oy

this relation leads to the following inequalities:

. = —12
- < c_ 1 N N |
(2 —¢) = E(t) < (24 ¢) where € Qe |[E(t)| =272, tel0,1]
This proves the results stated in Theorem 1. 0

The the approximating Bézier curve of degree six and the circular arc are visual-
ized in Fig. 2. The resulting error between the curve and the approximation is not
identified by the human eyes which is clear from figure of the corresponding error
plotted in Fig. 3.

The characteristics of the approximating Bézier curve are specified in the follow-

ing section.

5 Properties of the sextic Bézier curve

The most important characteristics of the error functions are the roots and the
extrema. These properties characterize the approximating sextic Bézier curve. The
first characteristic concerns the roots of the error functions e(t) and E(t) that are
specified in the following proposition.

Proposition I: The roots of the error functions e(t) and E(t) are:

1 s 1 3T 1 5%
t1 = §(l+cos(ﬂ)) =0.995722,ty = 5(1+cos(ﬁ)) =0.96194,t3 = 5(1%—008(%)) = 0.896677,
1 . 0T 1 3w 1 LT
ty = 5(1-|-sm(ﬂ)) = 0.804381,t5 = 2(1-|-s1n(24)) =0.691342,tg = 2(1-|-:31n(24)) = 0.565263,

1 LT 1 . 3w 1 . b7
tr = 5(1—Sln(ﬂ)) = 0.434737,tg = E(l—sm(ﬂ)) = 0.308658, tg = 5(1—Sln(ﬂ)) = 0.195619

1 o 1 3T 1 ™
= —(1—cos(2Z)) = 0.103323, 11 = =(1—cos(=2)) = 0. 2ty = = (1—cos(2-)) = 0.0042
t10 2( cos( 24)) 0.103323, t11 2( cos(24)) 0.0380602, t12 2( c05(24)) 0.00427757
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Figure 2: Circular arc and it’s sextic Bézier curve in Theorem 1.
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Figure 3: Euclidean Error of the sextic Bézier curve in Theorem 1.
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They also satisfy
ti+t; =1, for i+4j=13.

Proof: Immediate substitution of the values of t; in e(t) gives e(t;) = 0, i =
1,2,...,12. Since e(t) is a polynomial of degree 12 and has 12 roots, therefore,
these ones are all the roots. The error function E(t) has the same roots as e(t)
because E(t) = 0 iff \/22(t) + y2(t) = 1 iff 22(¢) + y*(t) = 1 iff e(t) = 0. O
The approximating sextic Bézier curve p in Theorem 1 and the circular arc ¢
intersect at the points p(t;) = c¢(t;), i =1,2,...,12.
Regarding the extreme values, we have the following proposition.

Proposition II: The extreme values of e(t) and E(t) occur at the parameters:

1 S
fo=1, f=5(1+ cos(%)) = 0082063, = (1 + cos(%)) = 0.933013,

- 1 ™ - 1 s
t3 = 5(1 + COS(Z)) = 0.853553, 4= 5(1 + cos(g)) =0.75,
- 1 o7 ~ 1 - 1 o
t5 = 5(1 + COS(E)) =0.62941, tg= 3 tr = 5(1 — COS(E)) = 0.37059,

1 s - 1 s
tg = 5(1 - cos(g)) =0.25, tg = 5(1 - COS(Z)) = 0.146447,
- 1 m - 1 m -
1o = 5 (1 — cos(%)) = 0.0669873, 11 = (1 — cos(13)) = 0.0170371, 12 = 0.

These parameters satisfy the equality:

ti+tj=1, for i+j=12.

Proof: The derivative of e(t) is a polynomial of degree 11. Substituting the 11
parameters t,...,%11 into this derivative gives ¢/(f;) = 0, Vi = 1,...,11. The
polynomial €(t) has degree 11 and consequently these are all internal critical points.
Inspecting the end points adds ty = 1, £12 = 0 to the critical points. For all t € [0,1],
we have 1 — oo < 22(t) + y?(t) < 1+ 545, thence /22(t) + y2(t) # 0, Vt € [0,1].
Differentiate E(t) and counter equate to 0 to acquire % =0iff ¢'(t) = 0.
Therefore, e(t) and E(t) reach the extrema at the same values. This finishes the
proof of the proposition. O

The disagreement in the values of F(#;) for odd and even i’s occurs because e(t)

equioscillates between + 5 and iﬁﬁ <E(t) < m, where € = mazo<i<1|E(t)].
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Proposition ITI: The values of the error functions e(t) and E(t) at #;’s are specified

by:
(Fai) = i =0,....6 (Faip1) = i =0,....5
€ 21 204872_ Yy Y € 2i+1 _2048’1_ gy Y
5 1 5 -1
E(fy) = =0 6 E(#g41) = ——,i=0,...,5
( 21) 4096’1 ) ) Yy ( 27,—|-1) 4096,2 ) )
Therefore,
1 1 1 1
 <e)< —, — <EMt)< ——. telo.1].
018 =W <50 1006 = PO < g £ €01

Proof: Substituting the parameters in the error functions confer to the parities.
The specifics of the proof of the proposition are left to the reader. O
The following proposition is a conclusion of Theorem 1 concerning the error at any
tel0,1].

Proposition IV: The errors of approximating the circular arc using the sextic

Bézier curve in Theorem 1 at any ¢ € [0, 1] are given by:

L 9, 429, 10015 19305

t =20~ 4 686447 +247521° — 58752¢7 + 9302448
‘O =55 5t 8 ot — 686417 +24752° — 58752t 4930

—97280t" + 6451210 — 24576t + 4096t'%, V¢ € [0,1].

Proof: This is a forthright conclusion of Theorem 1. The specifics of the proof
of the proposition are left to the reader. O
Employ the relation between E(t) and e(t) to obtain:

1 9 429 , 1001 5 19305
bt P

Et)E — — — t*—3432¢° +12376t5 — 293767 +46512¢°
(*) 4096 128 ' 128 16 32 + +

—48640t° 4 32256t10 — 1228811 4 2048t12, vt € [0, 1].

6 Conclusions and Open Problems

The sextic approximation of the circle is presented in this paper. The classical ap-
proximation guarantees that the error function equioscillates 8 times; but there is no
method to find this approximation. The approximation in this paper equioscillates
13 times with the Chebyshev polynomial as the error function that can not be made
better. The Bézier curve intersects the circular arc 12 times with maximum error
2- 1,

Our method has the following advantages:
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. It beats any other approximation to the circular arc with polynomials of degree

6

. The method is convenient also for curves and not only for functions.

. The posture of Bézier points of the resulting Bézier curve is masterful. This

helps designers using the Bézier curves to better understand choosing the

Bézier points.

Possible further investigations can be taken to solve the following issues:

1. Is it possible to find the polynomial of degree n of best uniform approximation,

using a similar method to other kinds of curves, that equioscillates 2n+1 times

rather than classical n + 2 times.

. Study sextic approximation with G¥— continuity using equioscillating error

functions and constrained Chebyshev polynomials.

. Detect a relation to write the Bézier points using the angle #. This authorizes

us to prescribe the best uniform approximation for arbitrary circular arc.

. Apply the approximation in this paper to implement degree reduction of Bézier

curves to gain the best approximation with the least possible error.

Acknowledgment: The author owes thanks to the reviewers for helpful and in-
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